Catalytic Enantioselective Synthesis of Prostaglandin E₁ Methyl Ester Using a Tandem 1,4-Addition-Aldol **Reaction to a Cyclopenten-3,5-dione Monoacetal**

Leggy A. Arnold, Robert Naasz, Adriaan J. Minnaard, and Ben L. Feringa*

Department of Organic and Molecular Inorganic Chemistry Stratingh Institute, University of Groningen Nijenborgh 4, 9747 AG Groningen, The Netherlands

> Received March 28, 2001 Revised Manuscript Received May 4, 2001

Conjugate addition reactions are among the most important carbon-carbon bond formation reactions in organic synthesis,¹ and considerable progress has been made in the development of asymmetric Michael additions and 1,4-additions of organometallic reagents.² Recently, highly enantioselective copper-catalyzed conjugate addition reactions of diorganozinc reagents to enones have been reported.³ Among the various chiral ligands introduced for this purpose phosphoramidite 4, developed in our laboratories, shows nearly complete stereocontrol in the reaction of (functionalized) dialkylzinc (R₂Zn) reagents with six-, seven- and eightmembered cycloalkenones.⁴ On the basis of this methodology, catalytic routes are now available to enantiomerically pure products, embedding cyclohexane and larger rings in their structure.⁵ In contrast, the catalytic enantioselective 1,4-addition to 2-cyclopentenone is a major challenge, particularly because chiral cyclopentane structures are ubiquitous in natural products. Employing TADDOL-based phosphoramidite ligands we obtained up to 62% ee when the Et₂Zn addition to 2-cyclopentenone was run in the presence of molecular sieves.⁶ Furthermore, with using chiral bidentate phosphoramidite ligands, the enantioselectivity improved to 83%.7 Chan8 reached 89% ee using a diphosphite ligand, whereas Pfaltz⁹ enhanced the enantioselectivity in this addition to 94%. Recently Hoveyda¹⁰ reported ee values up to 97% using a chiral peptide-based phosphine ligand in the 1,4addition of diethylzinc to 2-cyclopentenone. Although these catalysts give excellent enantioselectivities, the isolated yields for the 3-substituted cyclopentanones are often moderate. Possible reasons are the lower reactivity of 2-cyclopentenone in comparison with other cyclic enones, the side-reactions of the resulting zinc enolate with the starting material and the high volatility of the 1,4-addition product. Performing the reaction in the presence of an aldehyde increases the yield considerably.^{4,6,11}

- (3) For reviews, see: (a) Krause, N. Angew. Chem., Int. Ed. 1998, 37, 283.
- (b) Krause, N. Hoffmann-Röder, A. Synthesis 2001, 171.
 (4) (a) Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos, R.; de Vries, A. H. M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2620. (b) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.
- (5) (a) Naasz, R.; Arnold, L. A.; Pineschi, M.; Keller, E.; Feringa, B. L. J. Am. Chem. Soc. 1999, 121, 1104. (b) Naasz, R.; Arnold, L. A.; Minnaard, A.
- J.; Feringa, B. L. Chem. Commun. 2001, in press. (6) Keller, E.; Maurer, J.; Naasz, R.; Schrader, T.; Meetsma, A.; Feringa,
- B. L. Tetrahedron: Asymmetry 1998, 9, 2409. (7) Mandoli, A.; Arnold, L. A.; Salvadori, P.; Feringa, B. L.; Tetrahedron: Asymmetry 2001, in press.
- (8) Yan M.; Chan, A. S. C. Tetrahedron Lett. 1999, 40, 6645.
- (9) Escher, I. H.; Pfaltz, A. Tetrahedron 2000, 56, 2879.
- (10) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123 755
- (11) Kitamura, M.; Miki, T.; Nakano, K.; Noyori, R. Tetrahedron Lett. 1996, 37, 5141.

Scheme 1

Table 1. Results of Tandem 1,4-Addition-Aldol Reactions According to Scheme 1

entry	enone	R′2Zn	R"CHO	prod.	yield [%] ^a	ee (3a−f) [%] ^b
1	1a	Et	Ph	2a	67	87
2	1a	<i>n</i> -Bu	Ph	2b	64	87
3	1b	Et	Ph	2c	76	94
4	1b	<i>n</i> -Bu	Ph	2d	69	94
5	1b	Et	<i>p</i> -Br–Ph	2e	69	96
6	1b	<i>n</i> -Bu	<i>p</i> -Br–Ph	2f	64	97

^a Isolated Yields. ^b Determined with HPLC (Daicel CHIRAL PAK-AD).

We report here the highly enantioselective catalytic tandem 1,4-addition-aldol reaction of dialkylzinc reagents to cyclopenten-3.5-dione monoacetals in the presence of aldehydes. These compounds show a higher reactivity, and the heavily functionalized products are less volatile. The usefulness of this new method is illustrated by the total synthesis of (-)-PGE₁ methyl ester in seven steps using achiral starting materials and only a catalytic amount of a chiral copper complex.

Monoacetals 1a and 1b were employed in the tandem 1,4addition-aldol reaction with various aldehydes and dialkylzinc reagents (Scheme 1).¹² The catalyst was prepared in situ from 2 mol % Cu(OTf)₂ and 4 mol % (S,R,R)-phosphoramidite 4.

Full conversion was reached after 16 h to provide exclusively *trans* substituted cyclopentanones $2\mathbf{a}-\mathbf{f}$ in isolated yields up to 76% (Table 1). Excellent stereocontrol is also observed in the subsequent aldol step, as for the hydroxy ketones 2a-2f diastereomeric ratios higher than 95:5 were measured. The configuration of the main product was determined by NOESY-NMR. The adducts 2a-f were converted into the corresponding diketones **3a**-**f** in good yields to give single diastereomers suitable for ee determination by chiral HPLC. The enantioselectivity strongly depends on the acetal moiety present in the starting material as 87% ee for enone **3a** (entry 1) and 94% ee for enone **3c** (entry 3) was obtained. The use of different dialkylzinc reagents, however, has no influence on the selectivity of this reaction (entries 3 and 4). The structure of the aldehyde has a minor influence: the use of benzaldehyde and *p*-bromo benzaldehyde shows ee values of 94% and 97%, respectively (entries 4 and 6).

We have demonstrated therefore, that in the presence of 2 mol % of [(S,R,R)-4]Cu(OTf)₂ nearly complete stereocontrol over the formation of three consecutive stereocenters in this tandem 1,4addition-aldol reaction is achieved, providing multifunctional cyclopentanones. These results inspired us to demonstrate the

^{(1) (}a) Perlmutter, P. In Conjugate Addition Reactions in Organic Synthesis; Tetrahedron Organic Chemistry Series, No. 9; Pergamon: Oxford, 1992. (b) Tomioka, K.; Nagaoka, Y. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin/Heidelberg, 1999; Vol. 3; Chapter 31.1.

⁽²⁾ For a review, see: Sibi, M. P.; Manyem, S. Tetrahedron 2000, 56, 8033

^{(12) (}a) Yoshida, Z.; Kimura, M.; Yoneda, S. Tetrahedron Lett. 1975, 16, 1001. (b) All compounds exhibited spectroscopic data (¹H NMR, ¹³C NMR, HRMS) in accordance with the structures. Details of the synthesis of 1a, 1b, and 5 will be published in due course.

Scheme 3^a

^{*a*} Key: (a) (1) 3 equiv Bu₄NF (1 M in THF), methylpropionate, DMSO, 80 °C, 20 min; (2) Ac₂O, DMAP, pyridine, 20 min; (b) 5 mol % Pd(CH₃CN)₂Cl₂, THF, 3 h; (c) K₂CO₃, MeOH, 18 h; (d) (NH₄)₂Ce(NO₃)₆, MeCN, borate-HCl buffer (pH = 8), 60 °C, 2 h.

usefulness of this catalytic method by applying it to the synthesis of (-)-PGE₁ methyl ester.¹³

The initial approach we followed for this catalytic asymmetric total synthesis is reminiscent of the three component coupling reaction introduced by Novori et al.,¹⁴ a methodology which gives access to a variety of prostaglandins.¹⁵ However, the use of the required dialkenylzinc reagents instead of the previously used dialkylzincs did not lead to product formation. For this reason we developed a new strategy involving the introduction of the saturated α -chain with a functionalized zinc reagent and the ω -chain via an unsaturated aldehyde. The synthesis starts with enone 1b, aldehyde 5,^{12b,16} and the functionalized zinc reagent 6^{17} (Scheme 2). In the presence of 3 mol % of the catalyst we obtained compound 7 in 60% yield as the only product as a mixture of diastereomers (ratio 83:17) which differ in the configuration at the exocyclic stereocenter bearing the hydroxy functionality. This one-pot procedure is carried out with an enone and an enal. To differentiate between these, the unsaturated aldehyde is equipped with a removable silvl substituent, exploiting the fact that β -disubstituted enones are not reactive in the 1.4addition under these conditions. Reduction of the ketone moiety

- (15) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley & Sons: New York, 1994, Chapter 4.
 - (16) Magriotis, P. A.; Kim, K. D. *Tetrahedron Lett.* **1990**, *31*, 6137.
 (17) Langer, F.; Waas, J.; Knochel, P. *Tetrahedron Lett.* **1993**, *34*, 5261.

of **7** proceeds with 95% stereoselectivity using $Zn(BH_4)_2$ in ether at -30 °C. Compound **8** was isolated after chromatography as a single isomer in 63% yield with an ee of 94%. In the next step the silyl substituent was removed using Bu_4NF in THF/DMSO to give compound **9** (Scheme 3). This concept comprises a novel protection and deprotection sequence for enones suitable for the catalytic 1,4-addition with dialkylzincs. The cleavage of vinyl carbon-silicon bonds with Bu_4NF was developed by Nozaki.¹⁸ However, under the normal reaction conditions hydrolysis of compound **9** was observed to be caused by water in the commercial THF solution of Bu_4NF . Adding first sacrificial methylpropionate to remove the water by hydrolysis and only afterwards **8**, the desilylated compound **9** was obtained as the only product and used without further purification. Acetylation of **9** afforded **10** in 71% yield over two steps.

The 1,3-allylic transposition of **10** with a catalytic amount of Pd(CH₃CN)₂Cl₂ in THF proceeded with reasonable yield and full retention of configuration¹⁹ to give allylic acetate **11** with the required stereochemistry. After deacetylation in the presence of K₂CO₃ in MeOH, compound **12** was obtained in excellent yield. The last step is the deprotection of the ketone functionality to provide the labile β -hydroxy ketone moiety of the prostaglandin. This conversion was realized using a catalytic amount of (NH₄)₂-Ce(NO₃)₆ under nearly neutral conditions.²⁰ In this way PGE₁ methyl ester²¹ is obtained in 7% overall yield with 94% optical purity in seven steps from **1b**.

In conclusion we have demonstrated that cyclopenten-3,5-dione monoacetals give highly enantioselective tandem 1,4-additionaldol reactions in the presence of dialkylzinc reagents and aldehydes using a catalytic amount of $Cu(OTf)_2$ and phosphoramidite ligand **4**. Furthermore this reaction is the key step in a short total synthesis of PGE₁ methyl ester, comprising a new route to this natural product.

Acknowledgment. Financial support by the ministry of economic affairs (EET grant) is gratefully acknowledged.

Supporting Information Available: Experimental details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA015900+

(20) Markó, I. E.; Ates, A.; Gautier, A.; Leroy, B.; Plancher, J, -M.; Quesnel, Y.; Vanherck, J.-C. Angew. Chem., Int. Ed. 1999, 38, 3207.
(21) The analytical and spectral data (TLC, HPLC, ¹H NMR, ¹³C NMR, ¹³

(21) The analytical and spectral data (TLC, HPLC, ¹H NMR, ¹³C NMR, CD, MS) $[\alpha]^{23}_{D} - 51^{\circ}$ (*c* 1.0, CH₃OH) of **13** were identical with those of authentic material (Sigma) $[\alpha]^{23}_{D} - 54^{\circ}$ (*c* 1.0, CH₃OH).

⁽¹³⁾ Corey, E. J.; Cheng, X.-M. *The Logic of Chemical Synthesis*; Wiley: New York, 1989, Chapter 11.

⁽¹⁴⁾ Suzuki, M.; Kawagishi, T.; Suzuki, T.; Noyori, R. Tetrahedron Lett. **1982**, 23, 4057.

⁽¹⁸⁾ Oda, H.; Sato, M.; Morizawa, Y.; Oshima, K.; Nozaki, H. *Tetrahedron* **1985**, *41*, 3257.

⁽¹⁹⁾ For the Pd(II)-mediated allylic acetate transposition in a modified prostaglandin intermediate, see: Grieco, P. A.; Takigawa, T.; Bongers, S. L.; Tanaka, H. J. Am. Chem. Soc. **1980**, *102*, 7588.